

Chalmers, DAT300, 2018-10-10

WannaCry Ransomware Attack 2017-05-12

230 000 computers in 150 countries affected

- British Hospitals severely impacted
- Maersk reported financial impact 250M\$
- •

Your car?

- impacting your ability to travel

http://virusguides.com/wp-content/uploads/2016/09/ransomware-attacks-cars.jpg https://www.intelligentenvironments.com/wp-content/uploads/2016/11/Ransomware-Car.png

Trucks?

- Impacting transportation of goods!

In the first 24 hours...

- · Hospitals will run out of necessary supplies.
- Service stations will begin to run out of fuel.
- Just-in-time manufacturing get component shortages.

In just 2-3 days...

- Food shortages, consumer hoarding and panic.
- Garbage will start piling up in urban areas.
- Container ships will sit idle in ports and rail transport will be disrupted

In just one week...

Automobile travel will cease due to lack of fuel.

(US-centric scenario)

Volvo Group - What we do

We are one of the world's leading manufacturers of trucks, buses, construction equipment and marine and industrial engines.

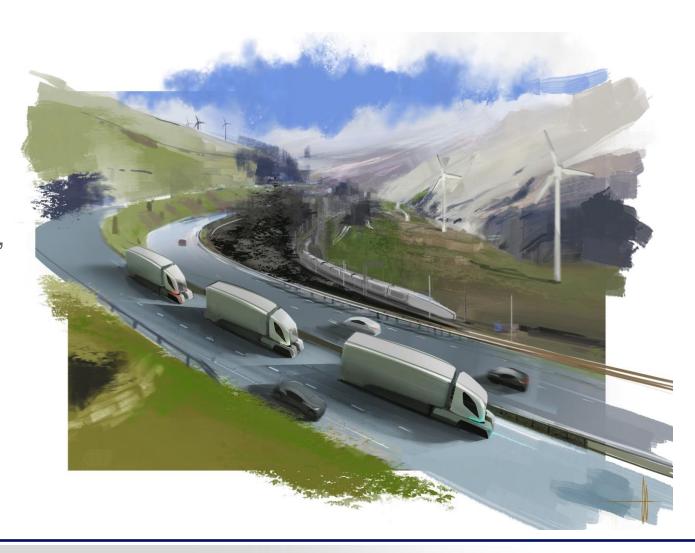
ON THE ROAD

Our products help ensure that people have food on the table, can travel to their destination and roads to drive on.

AT THE SITE

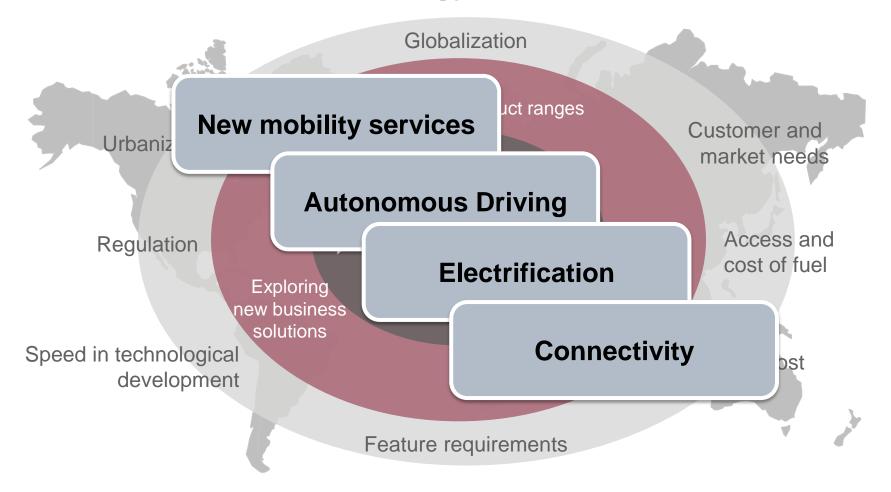
We contribute to the extraction of some of the world's most important raw materials. Our engines, machines and vehicles can be found at mining and construction sites and in the middle of forests.

IN THE CITY

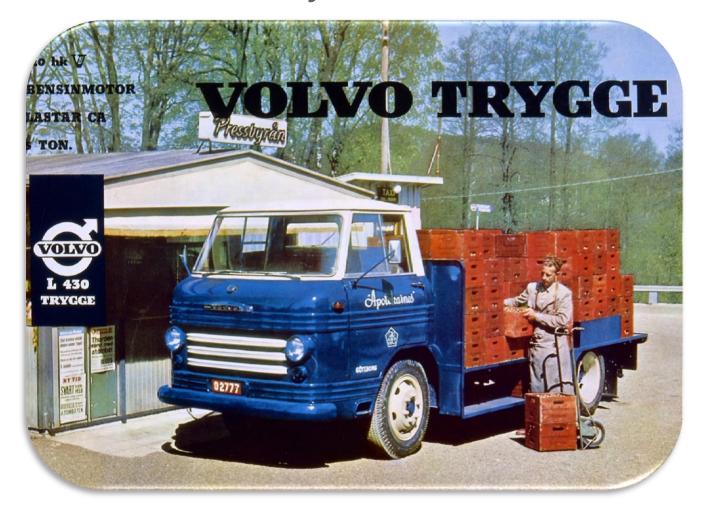

Our products are part of the daily life. They take people to work, distribute goods and collect rubbish. We are developing tomorrow's public transport solutions.

AT SEA

Our products and services are with you, regardless of whether you are at work on a ship or on holiday in your pleasure boat.


Group Trucks Technology

Our organization for research and product development of complete vehicles, powertrain, components and service offering.

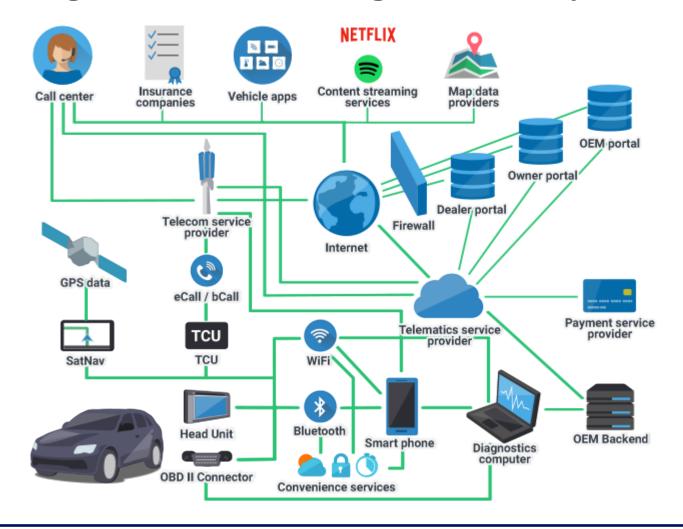

The World Evolve

- Drivers for new technology

The classic vehicle

... was a self-contained system

The modern vehicle


2018-10-10

... is essentially a full IT infrastructure, on wheels!

Connected vehicles

- The more things are connected, the higher the security concern

Researchers demonstrate the potential

July 21, 2015: "Hackers remotely kill a Jeep on the highway"

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Details: http://illmatics.com/Remote%20Car%20Hacking.pdf

Feb 24, 2016: "Nissan Leaf easily hacked through browser-based

attacks"

Source: http://www.bbc.com/news/technology-35642749/

Details: http://www.troyhunt.com/2016/02/controlling-vehicle-features-of-nissan.html

Sep 20, 2016: "Researchers remotely hack Tesla Model S"

Source: https://www.washingtonpost.com/news/the-switch/wp/2016/09/20/researchers-remotely-

hack-tesla-model-s/

Aug 2, 2016: "Hackers hijack big rig truck's accelerator and brakes"

Source: https://www.wired.com/2016/08/researchers-hack-big-rig-truck-hijack-accelerator-brakes/

Attackers and Motivations

Researcher may want to showcase and increase awareness

Hacker wants Fun, Fame

Third party developers want to offer add-ons and tuning

Criminal wants to disable vehicle to steal goods

> **Competitor** can be interested in intellectual property

Authorities may require functionality for law enforcement, owner want to circumvent

> **Driver** want higher road speed limit, owner want to control fuel consumption

Fleet/Vehicle owners may want to "upgrade" their own vehicles

Thief wants to disable alarm or immobilizer, copy/add keys

> Criminals can earn money by vehicle ransom

Attackers and Attack vectors

Tool access (unauthorized program licence, ECU reprogramming)

Proximity access (Wifi/Bluetooth)

Remote access

- Telecom network access (radio / base station)
- VPN entry points (Back-office)
- Portals exposed to the Internet

Attacks on infrastructure

ElectriCity – Bus 55

- Wireless connection
- Charging stations, 600+ Volts
 - Safety implications
- Supplier / consumer
 - Threat of fraud (billing)

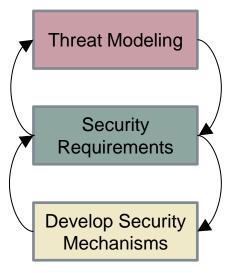
- Something to think about:
 - Impact on society of a cyber attack on the power grid from transportation point of view: Electrical vs fossil fuel vehicles?

Attacks on infrastructure

V2I – Example use cases and threats

- Road works warning
 - False warnings
 - Jamming legitimate information
- Green light priority (heavy vehicles wear down pavement more when stopped. Energy consuming to decelerate and accelerate)
 - Cheating. Attackers getting green light.
 - Traffic disruption by spoofing heavy traffic (or emergency service vehicles)

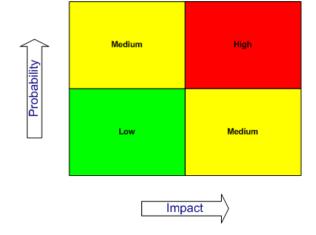
Security Engineering principle

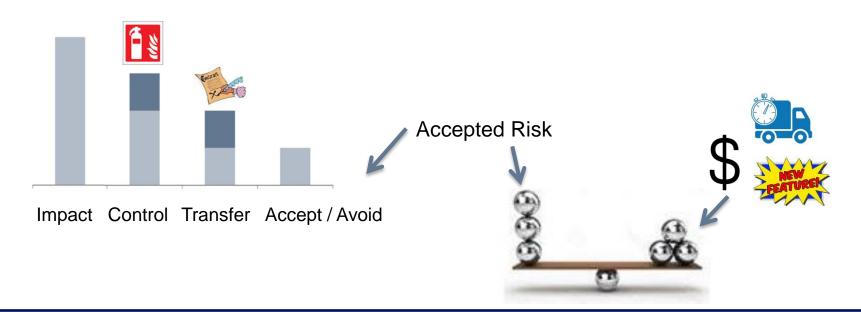

The principle for Security Engineering is a risk based approach.

Security requirements are derived using a

structured engineering process and based on:

- identification of threats
- risk assessment (likelihood and impact)
- mitigate or accept the risk associated with the threat


Note: Mature areas can have standardized. minimum security requirements (compliance)



Source: Myagmar, Yurcik

Risk Management


- A very quick introduction

Security risks are dynamic

- risk level at product release will not remain

Cybersecurity and Vehicle Lifecycle

Implement Security:

- Secure Software Design
- Secure Hardware Design
- Perform code review
- Manage third party software

Maintain Security:

- Threat Intelligence
- Vulnerability and Patch management
- Incident Response

Design for Security:

- Formulate Security Objectives
- Perform Threat Analysis and Risk Assessment
- Derive Business Security Requirements
- Develop Security Concept

Assess Security:

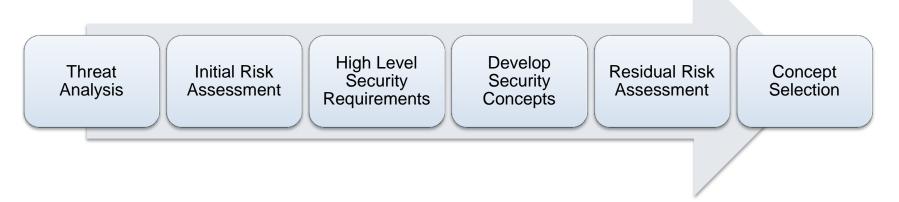
- Perform Functional Testing
- Perform Vulnerability Testing
- Perform Penetration Testing
- Perform Final Cybersecurity Review

Design

Implementation

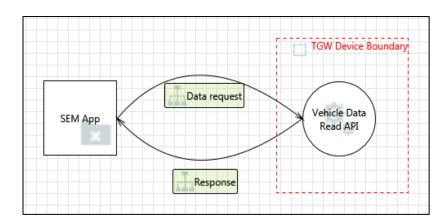
Verification & Validation

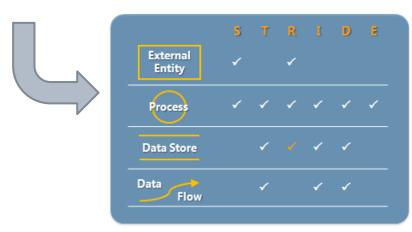
Design for Security


Design for Security:

- Formulate Security Objectives
- Perform Threat Analysis and Risk Assessment
- Derive Business Security Requirements
- Develop Security Concept

Design Verification & Validation


Design for Security



- Threat Analysis to <u>identify</u> possible cybersecurity <u>threats</u>.
- <u>Assess impact level</u> of the identified threats/attacks (less focus on threat level)
- Formulate <u>high level security requirements</u> to mitigate the identified risks.
- Develop security concepts to be implemented.
- Assess Threat Level considering the security concepts in place
- Results in residual design risks (Accept or Avoid)

Threat Analysis

- System model
- STRIDE analysis

Threat	Definition		
Spoofing	An attacker tries to be something or someone he/she isn't		
Tampering	An attacker attempts to modify data that's exchanged between your application and a legitimate user		
Repudiation	An attacker or actor can perform an action with your application that is not attributable		
Information Disclosure	An attacker can read the private data that your application is transmitting or storing		
Denial of Service	An attacker can prevent your legitimate users from accessing your application or service		
Elevation of Privilege	An attacker is able to gain elevated access rights through unauthorized means		

4	Α	В	С	D
1		HEAVENS Risk assessment tool		
2				
3	ld	Asset / Element	Threat	Attack example
4	1	Process X	Spoofing	
5	2	Process X	Tampering	
6	3	Process X	Repudiation	
7	4	Process X	InformationDisclosure	
8	5	Process X	DenialOfService	
9	6	Process X	ElevationOfPrivilege	
10	7	Data Flow Y	Tampering	
11	8	Data Flow Y	InformationDisclosure	
12	9	Data Flow Y	DenialOfService	
13	10			
14	11			
15	12			

Risk Assessment – Impact level

Safety (ISO26262 severity)

No injury

Light/moderate injury

Severe/life-threatening injury

100

Life-threatening/Fatal injury

1000

Financial (Operating Income)

< X MSEK

10

X-X MSEK

X-X MSEK

700

X-X MSEK > X MSEK

1000

Operational (Disturbance)

No impact

Low

Medium

High

100

Privacy and Legislation

No impact

Low

Medium

High

100

Impact Level Calculation

Sum of IL parameter values	Impact Level	IL Value
0	None	0
1 – 19	Low	1
20 – 99	Medium	2
100 – 999	High	3
>= 1000	Critical	4

Risk Assessment - Threat level

Expertise

Layman	0
Proficient	1
Expert	2
Multiple experts	3

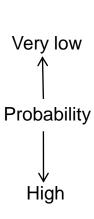
Knowledge about TOE

Public	0
Restricted	_1
Sensitive	2
Critical	3

Window of opportunity-Accessibility

11	•
Indirect wireless	0
Direct wireless	1
No vehicle disassembly	2
Disassembly of vehicle	3
Component disassembly	4

Window of opportunity-Exposure time


Infinite	0
Frequent	1
Sporadic	2
Rare	3

Equipment

Standard	0
Specialized	1
Bespoke	2

Threat Level Calculation

Sum of TL parameter values	Threat Level	TL Value
> 9	None	0
7 – 9	Low	1
4 – 6	Medium	2
2-3	High	3
0 – 1	Critical	4

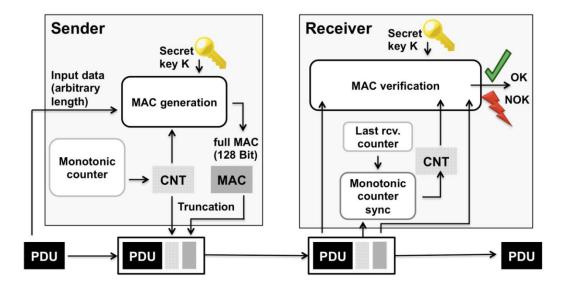
Risk Assessment – Security Level

Security Level (SL)	Impact Level (IL)					
		0		2	3	4
	0	QM	QM	QM	QM	Low
Threat Level	1	QM	Low	Low	Low	Medium
(TL)	2	QM	Low	Medium	Medium	High
	3	QM	Low	Medium	High	High
	4	Low	Medium	High	High	Critical

Security Requirements

 After determining the risk for identified threats, security requirements can be derived for each threat

No.	Asset	Threat	Security Attribute	Security Level
1	Vehicle Data Response	Tampering of Vehicle Data Response	Integrity	Low


High level security requirement #1:

The integrity of the Vehicle Data Response shall be ensured

Example of a Security Concept

Security Requirement: The integrity of message X shall be ensured

Integrity protection is e.g. included in AUTOSAR Secure Onboard Communication protocol (adding message authentication codes (MAC) to the original data)

Mechanism clear, but security relies on good key management

Implement Security

Implement Security:

- Secure Software Design
- Secure Hardware Design
- Perform code review
- Manage third party software

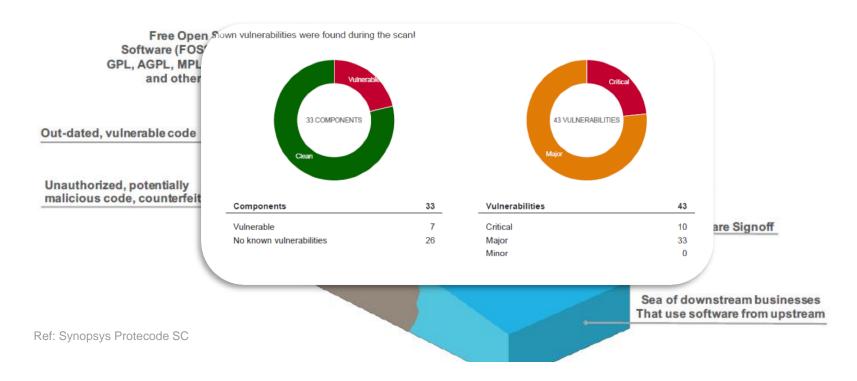
Design

Implementation

Verification & Validation

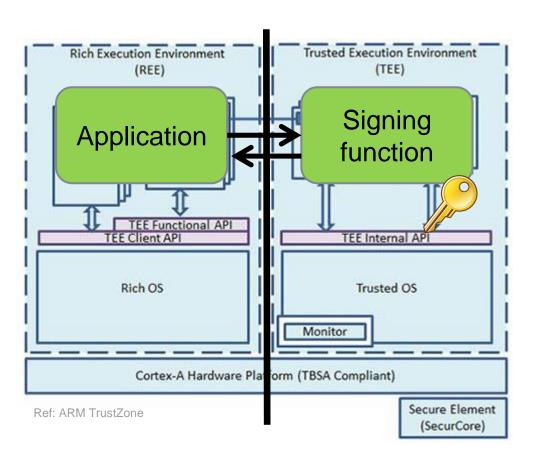
Static code analysis

```
#define NUM_OF_ARGUMENTS 2
∃typedef struct
                                                   Buffer overflow example of MISRA C Clean code.
   BYTE password[12];
                                                   MISRA C compliance != secure
   BOOL valid:


☐ }AuthenticationType;

       □int main(int argc, char *argv[])
             AuthenticationType auth;
             auth.valid = 0;
             if (argc == NUM OF ARGUMENTS)
                 if(strcpy(auth.password,argv[1])!=0)
                                                                Array 'auth.password' size is 12.--> 'auth.password' is passed as an argument to function 'strcpy'.
                                                         Klocwork Issue Information
                     if(strcmp(auth.password, "HEAVENS")=
                                                                                                                ▼ 🗖 X
                                                          Array 'auth.password' of size 12 may use index value(s) 12..INT_MAX
                         (void)printf("\n Correct Passwor
                                                          Problem ID
                         auth.valid = 1;
                                                                       c:\Projects\HEAVENS\stat analysis\dhs examples 21 to 38
                                                          Location
                                                          VS2010\misra 1\main.c(20:13)
                     else
                                                          Severity
                                                                       Critical
                                                          Owner
                                                                       unowned
                         (void)printf ("\n Wrong Password
       if(auth.valid!=0)

√void)printf ("\n Security level 1 access granted \n");
```


Software composition analysis

Code Travels

Software and Hardware design

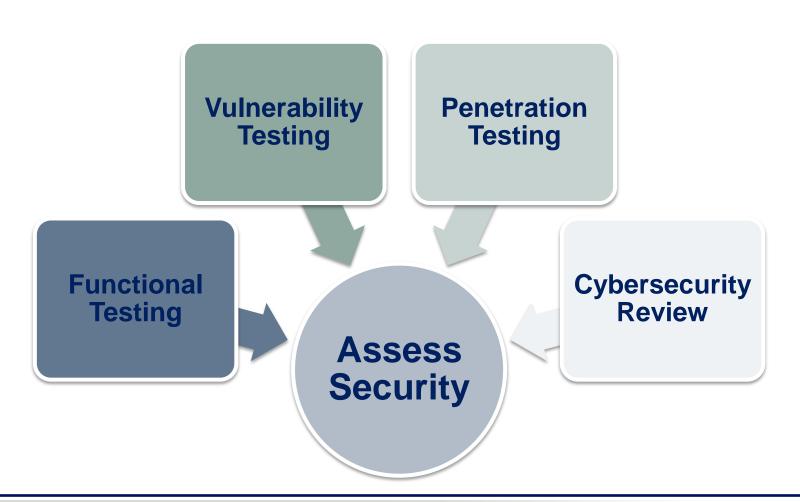
- Example of isolated execution environment

Example use

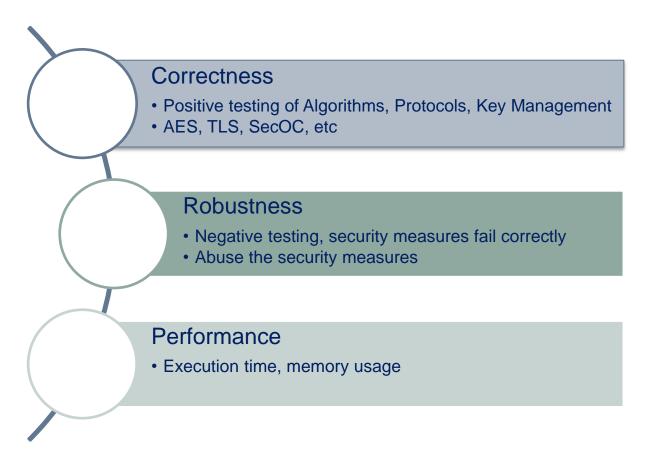
- Need to protect access to private key
- Application can sign data, but have no access to key
- Even if attacker compromise application, private key is not compromised

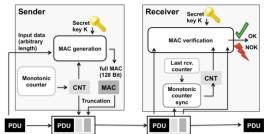
Assess Security

Assess Security:

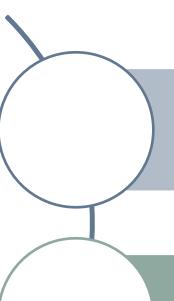

- Perform Functional Testing
- Perform Vulnerability Testing
- Perform Penetration Testing
- Perform Final Cybersecurity Review

Design


Implementation


Assess Security

Functional testing


- verify correct implementation of security measures

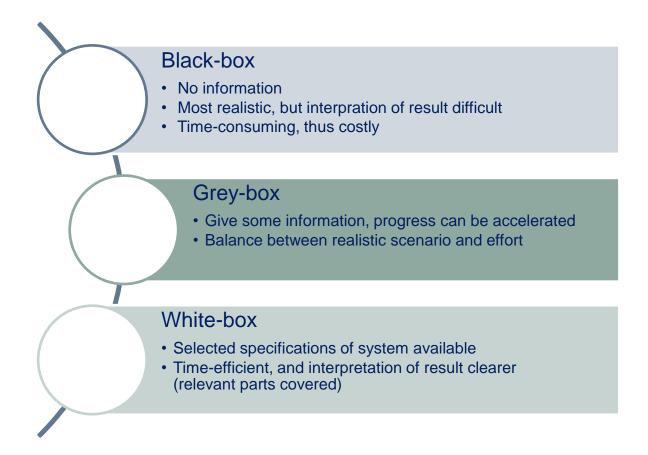
Vulnerability and Fuzz testing

- search for known and unknown vulnerabilities

Known vulnerabilites

- Scan for open ports, services exposed.
- Verify known vulnerabilities patched
- Software Composition analysis

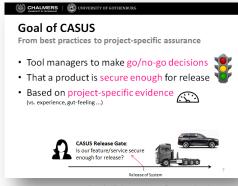
	roducts By To	tal Number Of "I	Distinct" Vu	Inerability
4	ear: 1999 2000 2001 20	02 2003 2004 2005 20	006 2007 2008	2009 2010 2011 25
1	Product Name	Vendor Name	Product Type	Number of Vuinerabilitie
1	Linux Kernel	Linux	os	20
2	Android	Google	OS	13
3	Imegemagick	Imagemagick	Application	10
4	Iphone Os	Apple	os	10
5	Mac Os X	Apple	os	2
١	Windows Server 2008	Microsoft	os	
	Gridows 7	Microsoft	OS	
	ws Vista	Microsoft	os	
		Debian	os	
		Google	Application	



- Fuzzing, expose interfaces to unexpected input
- Generation-based, protocol aware
- Robustness

Penetration testing

- authorized, simulated attacks on the system



Final Cybersecurity Review

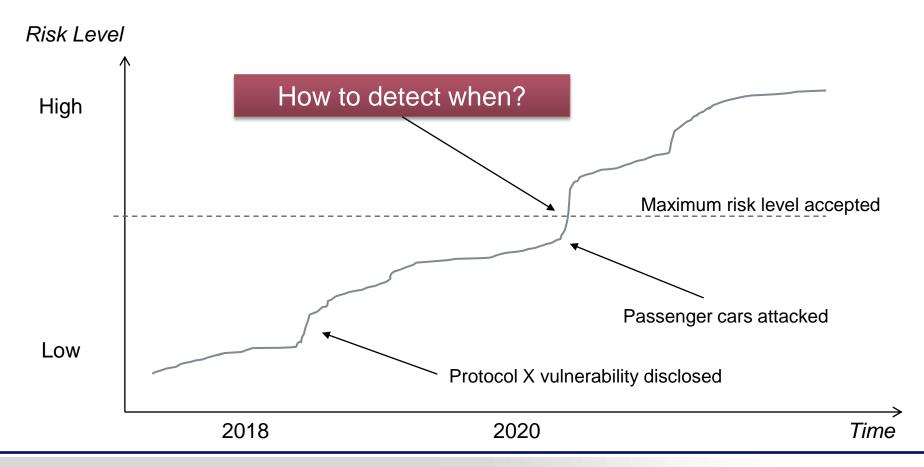
- is the system secure enough for release?

PhD position in research project CASUS

Maintain Security

Maintain Security:

- Threat Intelligence
- Vulnerability and Patch management
- Incident Response


Design

Implementation

Verification & Validation

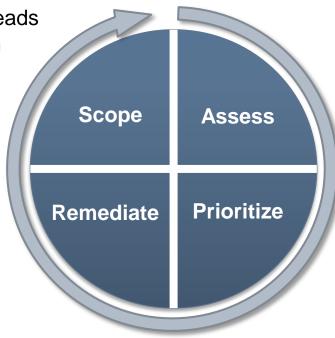
Remember?

- Threat and vulnerabilities change over time

Vulnerability Management

Mainly related to mitigating from known software vulnerabilities.

The process is **proactive**, defend against known vulnerabilities **before attacks** take place.


Common types:

Buffer overflow, over-reads

Lack of input validation

Code injection

Scope

- Asset inventory
- Schedule

Assess

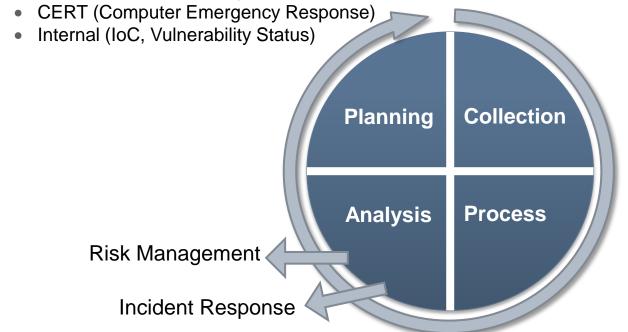
- Vulnerabilities feeds
- Scan / research assets
- Determine relevance

Prioritize

- Assess risk
- Plan actions

Remediate

- Deploy security updates
- Report progress


Threat intelligence

Threat Intelligence organize, analyze and refine information about potential or current attacks

Type of intelligence sources

- Industry ISAC i.e. Auto ISAC
- Publicly Available sources (OSINT)

Commercial sources (e.g. Recorded Future)

Planning

- Identify attack vectors
- Identify indicators of compromise (IoCs)
- What data to collect

Collection

- Real time evidence (IoC)
- Vulnerability status
- External threat feeds (OSINT, Auto-ISACs)

Process

- Aggregation
- Filter
- Specific internal data
- Generic external data

Analysis

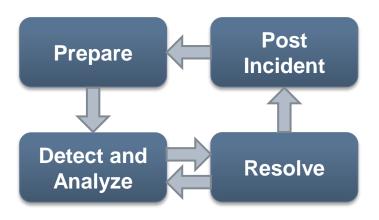
Threat and Risk analysis Intelligence Reporting

Threat Intelligence example

- Automotive Industry Information Sharing

To promote collaborative cyber security efforts, the auto industry created the Automotive Information Sharing and Analysis Center (Auto-ISAC) in July 2015.

Intel Sharing
Data curation across intel feeds, submissions and research


Community Development
Workshops, exercises, all hands, summits and town halls

Ref: Auto-ISAC

Incident Response

Incident Response aims to "shorten the window" from incident detection to applied resolution

Incident response is highly interacting with Threat Intelligence

Prepare

- Create plan
- Identify contact persons
- Train and exercise
- Identify indicators/channels

Detect and Analyze

- Incident channels
- Triage (evaluate and confirm)

Resolve

- Containment
- Develop mitigation
- Recovery

Post-incident

Feedback and Reporting

The bigger picture

- Holistic Cybersecurity Management

